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A Galerkin method is proposed for a class of boundary-layer flow problems. 
In  this method, the assumed solution is composed of an auxiliary function and 
a series solution. The representing functions used in the series solution are 
orthonormal eigenfunctions, closely related to that of the boundary-layer equa- 
tion, and are independent of the initial condition, as well as the boundary con- 
ditions. The reduced system of stiff, first-order, nonlinear, ordinary differential 
equations then has diagonal dominance for the first part of the flow region. The 
proposed method has been tested on two representative flows. Numerical experi- 
ment's show that highly accurate results can be obtained for the entire boundary- 
layer flow region, if the auxiliary function satisfying the initial and boundary 
conditions is chosen to satisfy the first compatibility condition of the upstream 
flow region. I n  fact the computation is rather simple, and the numerical integra- 
tion of the reduced initial-value problem can be carried out up to separation with 
a fairly large step. 

1. Introduction 
The development of boundary-layer theory is closely related to the advance- 

ment in high performance of aeroplanes and ships, to  the reduction of losses in 
turbomachines, and to providing a high level of space technology, Hence, in 
recent years there has been much attention directed towards developing a general 
technique capable of solving successfully and effectively the complicated set 
of boundary-layer equations. The techniques that come close to this desirable 
goal are the method of weighted residuals (Galerkin method), the difference- 
different'ial method (Hartree-Womersley method), and the implicit finite- 
difference method. 

The implicit finite-difference techniques have been testedupon many boundary- 
layer flow problems with satisfactory results, by many researchers. The main 
difficulties confronting the general application of the method have been discussed 
by Flugge-Lotz (1967) and by Emmons (1970). The application of the Hartree- 
Womersley procedure to boundary-layer problems has been investigated in detail 
by Smith &Clutter (1963) andclutter& Smith (1964). Theyreduced the governing 
partial differential equations to a system of second-order ordinary differential 



784 C.-C. HSU 

equations, by replacing the streamwise derivatives with finite-difference repre- 
sentations. Many flow examples had been tested; and the results obtained were 
generally accurate. However, in common with the implicit finite-difference 
method, there are some difficulties in application; special measures are therefore 
needed. For instance, a shooting method must be employed to solve a coupled 
system of two-point boundary-value problems which has a semi-infinite domain. 
Moreover, owing to the numerical stability condition, the smallest step size that 
can be taken in the streamwise direction is limited. This limitation is of particular 
relevance near separation, where a very small step size is generally required. 

The Galerkin method and other methods of weighted residuals have the 
advantage over finite-difference methods that the operation required in a 
boundary-value problem can be carried out exactly. For this reason one can 
expect that solutions by a Galerkin procedure give better results with less 
computational effort. The Galerkin method has been applied to boundary-layer 
flow problems, with satisfactory results, by e.g. Dorodnitsyn (1 962), Bethel 
(1966), Bossel (1970), MacDonald (1970), Mitra & Bossel (1971). One problem 
that occurs in the integration of the boundary-layer equations is the stiffness of 
the reduced system of first-order ordinary differential equations that one must 
ultimately solve. In  a sense, all numerical approaches to boundary-layer prob- 
lems can be regarded as different ways of overcoming the difficulty introduced 
by the stiffness of the system. The stiffness becomes more pronounced if the 
number of representing functions in a Galerkin method, or the number of grid 
points in a finite-difference procedure, is increased. It is a major obstacle in 
high-accuracy computations. Most of the realizations of Galerkin's procedure use 
only a very limited number of terms; and then the'stiffness problem becomes less 
obvious. In  general, boundary-layer profiles are fairly smooth, so that a repre- 
sentation with a limited number of terms is possible. This feature may well have 
accounted for the success of the approaches mentioned. We mention in passing 
that the stiffness problem is somewhat relieved if one introduces a co-ordinate 
transformation of the Falkner-Skan type. The rapid decrease of certain particu- 
lar solutions, in representations using the original co-ordinates, can be attributed 
to the fact that the co-ordinate system does not follow the spreading of the 
boundary layer. Hence the eigensolutions €or perturbations of a Falkner-Skan 
profile decrease much more slowly, because they express only the smoothing out 
of details of the initial profile, while the natural spreading of the profile is taken 
into account by the choice of the co-ordinate system. 

The Galerkin method is not without deficiencies. The selection of a set of 
representing functions is crucial to the accuracy of the procedure. For instance, 
if the set of representing functions used is not complete, then the increasing order 
of approximation does not necessarily result in an improvement in accuracy. 
In most of the approaches mentioned, the representing functions used are either 
power series of the independent variable, or powers of some exponential func- 
tions. Of course, a continuous function can be approximated arbitrarily well by 
a polynomial of sufficiently high degree; but in numerical practice the degree of 
a polynomial one can handle in this manner is rather low. If one tries to approxi- 
mate a profile by a polynomial of high degree, then extremely ill-behaved 
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matrices will arise, and the method becomes intractable. This deficiency 
disappears if one uses orthogonal polynomials. A representation of this kind 
combined with some special method for integrating stiff systems of differential 
equations, such as that of Gear (1969), would make it possible to increase the 
number of terms to be carried. 

In  this study a complete set of orthonormal eigenfunctions is derived through a 
rational analysis and linearization of the governing boundary-layer equations, 
for a class of steady two-dimensional incompressible laminar flows. The eigen- 
functions obtained have closed-form solutions, and can be predetermined and 
used in the Galerkin method for all conceivable nonlinear problems governed by 
the system of equations treated. In  the proposed Galerkin procedure, the 
assumed solution is composed of two parts: an approximating function F(<, 7) 
and a series of representing functions. The auxiliary function P(c , r )  is to be 
selected to satisfy the inhomogeneous boundary condition at infinity, as well 
as to improve the convergence of the series solution. The boundary-layer problem 
is then reduced to an initial-value problem. The system of first-order nonlinear 
ordinary differential equations to be integrated has a diagonal-dominance form, 
a t  least in the region close to the initial station. Under these circumstances 
the solution of the system of stiff equations becomes rather simple (Guderley & 
Hsu 1 9 7 2 ~ ) .  

Two representative boundary-layer flow problems have been chosen for testing 
the proposed Galerkin method: linearly retarded flow and flow past a circular 
cylinder. The computational method is rather simple and stmightforward. The 
numerical experiments show that highly accurate results can be obtained for 
the entire boundary-layer flow region, if the auxiliary function F(<, 7) is chosen 
to satisfy the initial profile and the first compatibility condition of the upstream 
flow region. 

2. Governing equations 
For a steady, two-dimensional, incompressible, laminar flow past a submerged 

body the governing boundary-layer equations, made dimensionless by a charac- 
teristic length L and a characteristic velocity U,, are 

u1 and w1 are the dimensionless velocity components in the x1 and y1 directions, 
respectively. C$(xl) is the given external flow velocity; and Re = U, L/v is the 
Reynolds number. The associated boundary conditions and the initial condition 
are assumed to be 

%(Z,, 0) = 0, WI(21,O)  = 0, (2.3) 

(2.4) u1 (x1, Y1+ a) -+ Ul(XI), 

50  

(2 .5 )  
F L M  69 
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Equations (2.1)-(2.5) constitute the formulation of the class of boundary-layer 
flow problems to be studied. It is generally advantageous to transform the prob- 
lem before a solution technique is employed. 

Frequently, one carries out the transformations 

x2 = j;'?J,(s)ds, y2 = Re~Ul(xl)yl, (2.6) 

u2(x27 O) = O, 2'2(x2, 0) = 0, (2.10) 

(2.11) 

u2(0, Y2) = %(Yl(Y2))/Ul(O). (2.12) 

UZ(X2, y2 --f 00) --+ 1, 

This system of transformed equations has the advantages over the original one 
that it does not depend on the Reynolds number, and that the boundary con- 
ditions are the same for all conceivable flow problems. 

Next, one can reduce the number of dependent variables by one, by the von 
Mises transformation. Moreover, it is advantageous in numerical methods if a 
Falkner-Skan transformation is also incorporated so that the boundary-layer 
thickness, expressed in terms of the independent variables, will remain of the 
same order of magnitude through the entire flow region, or at  least a major part 
of it. Accordingly, one introduces 

(2.13) 

U(.,Y) = uE(x2,Y2), U ( 4  = U,(X,). (2.15) 

Then one obtains, from (2.8)-(2.12), 

(2.16) 

u(x ,  0) = 0, u(2, y -+ cg) -+ 1, (2.17) 

,407 Y) = Uo(Y)- (2.18) 

u(x, y) has the dimensions velocity squared; and u,(y) is the known initial profile. 
For computational purposes, the lower integration limit in the first transforma- 
tion of (2.14) must be replaced by a finite but small number E .  Hence one has 

x=ln(:) or x 2 =  € e x .  (2.19) 
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We also note from the second relation of (2.14) that the independent variable y 
is linearly proportional to either y, or y2 in the vicinity of the submerged body. 
This fact is important in shdying the behaviour of the function u(x, y) in the 
region y < 1. 

3. Initial profile uo(y) 

In  principle, the initial profile can be arbitrarily prescribed. However, in order 
to obtain realistic examples we proceed in the following manner. For the class 
of boundary-layer flow problems considered, the external flow velocity U,(Z,) 
can be represented by a power series in xl. Hence, for x1 < I ,  one has 

Ul(X1) - XF, (3.1) 

where m is a constant parameter, depending on the flow problem. According to 
the transformations (2.6) and (2.14), one then finds 

d l n U  m 
- = &Po, ax m + l  

where Po as usual describes the wedge angle of a Falkner-Skan flow. Assuming 
that the initial profile uo(y) is given by a Falkner-Skan solution, one obtains, 
from (2.16) and (2.17), 

d2 1 du Y2 A+ --- --“+4p -(I-u,)=O, 
dY2 6 Yl dY “,g 

u0(O) = 0, uo(y -+ Go) -+ 1. 

The familiar form of the Falkner-Skan equation, namely 

(3.3) 

(3.4) 

f”’(r) +f(r)f”(v) +Po[1 -.r2(r)1 = 0, 

Y2 =f(r)/J% UO(Y) = [f’(r)l” 

u0(y) = b2y2 + b3y3 + b4y4 + . . . . 

can be derived, from (3.3), by the relations 

For sufficiently small values of y, the initial profile can be expanded as 

(3.5) 

The constant coefficients bi are found to be 

b, = J2 f ” ( O ) ,  b, = -+Pobc*, b 4 - - -1p2b-2  3 0 2 , etc- (3.6) 

The expansion (3.5) and its derivatives are needed in generating the initial 
profile by a direct integration of (3.3), since the coefficients of (3.3) are singular 
a ty  = 0. 

For y 3 1, the asymptotic behavour of uo(y) can be found in the following 
manner. Let 

where ~ ( y )  is small. One then obtains from (3.3) the linearized equation 

(3.7) UO(Y) = 1 +4Y), 

-+ y3-- --44p0Y2€ = 0. 
d2e dy2 ( :I:; (3.8) 

50-2  
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To recognize the relative importance of different terms as y -+ 00, we carry out 

(3.9) 
the transformation 

which removes the first derivative term. Equation (3.8) now takes the form 
E(Y) = Y t  exp ( - h4) 

d2B/dy2 - [f@ + (I  + 4p0) y2+ &/-’] B = 0. (3.10) 

To find an asymptotic solution, one first determines an expression of the form 

B(Y) Y” exp (C(y)). (3.11) 

c(y) is chosen so that (3.10) is satisfied in the highest power in y; andp is chosen to 
suppress the term of next order induced by c(y). One obtains 

?(Y) y-8 exp ( 1- W).  (3.12) 

Substitution of (3.12) into (3.9) gives 

e(y) N y-l and ~ ( y )  N y-l exp ( - ky4). (3.13) 

The first relation in (3.13) is not suitable for problems of boundary-layer type 
considered. Therefore, an asymptotic solution for the initial profile is 

u,(y) = 1 - Ky-l exp ( - $y4). (3.14) 

K is an arbitrary constant, which can be determined by matching. The constant 
,u in (3.11) can also be chosen to satisfy the term of next order. One then obtains 

B(y) N y4flo-*exp (4y4) and B(y) N ~ - $ - ~ f l o  exp ( - +y4)). 

Consequently one has another asymptotic solution 

u,(y) = 1 - K1y-2-480 exp ( - ty4). (3.15) 

In  computation the asymptotic solution obtained, either (3.14) or (3.15) should 
be used for y 9 1. 

4. Representing functions 
In  order to find an orthonormal set of representing functions, which are closely 

related to the eigenfunctions of the operator occurring in the boundary-layer 
equation (2.16), and which are independent of the initial condition as well as 
boundary conditions, a further transformation must be carried out. First, one 
rewrites (2.16) in the form 

au ~8 [ I  a Z u  I aul au dln U 
ax 4 g a y 2  y3ay aY dx 

+$y- + 3( 1 -u) -+ $(u*-ui) - - - -- . (4.1) [;$ - = -  

This is based on the assumption that, for a certain interval in z, the profile u(x,  y) 
does not deviate much from the initial profiIe u,(y). Next, a transformation of 
the independent variable is carried out, to bring the predominant part of the 
operator into a standard form. Let 

5 = x, 7 = [:lo* suit  (s) ds , I” (4.2) 
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Equat,ion (4.1) becomes 

and (2.17) and (2.18) give the conditions 

V(t,O) = 0, v(t,7 + a) + 1, (4.5) 

(4.6) 

The function u0(y) now appears only in the coefficient of the first derivative 
and in the nonlinear term. In  order to separate out the dominant part of the 
coefficient, we study its behaviour at  7 = 0 and as 7 + 00. For 7 < 1, one obtains, 
from (3.5) and (4.2), 

4% 7) = vo(7) 3 UO(Y(7)). 

(4.7) 

Then, by inversion of (4.7), one finds 

(4.8) 
l b  l b  

y = b;q [ l+-AbtT+- l o b ,  14(b: --0.31< ;:) b ty2+0(73) ] .  

Hence, for 7 < I, the coefficient of the first derivative in (4.4) is 

(4.9) 
47 

As for 7 9 1, one has 
7 = ($?I2)# r1+ o(Y-2)1, 

Y = ($P 7"1+ O(7-91, 

(4.10) 

(4.11) 

(4.12) 

Displaying the dominant terms of the coefficient at  7 = 0 and 7 --f GO, we write 
(4.4) in the form 

av dln U 
+&(7)-+2(1-~)-+R(5,7), (4.13) 

a7 d t  

where (4.14) 

(4.15) 

The set of representing functions, independent of the initial as well as the 
boundary conditions, can now be obtained from the eigensolutions of a problem in 
which only the first term of the right-hand side of (4.13) is considered. This gives 
an eigenvalue problem 

(4.16) 
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The eigensolutions of this problem can be obtained in closed form. The asymp- 
totic behaviour of the solution of (4.16), for large 7, suggests the hypothesis 

Y(7)  = exp ( -%I3) T(7). 
This brings (4.16) into the form 

(4.18) 

(4.19) 

This equation can then be solved by a series expansion. Eigensolutions satisfying 
the boundary conditions, (4.17), are obtained if the series solution terminates. 

A, = k, Y k ( 7 )  = ?exP ( -+I3) Pk(7), (4.20) Thus one finds 

for k = 1,2, . . . , where Pk(7) is a polynomial of degree (k - 1) in y3. To be specific, 

(4.21) 

From (4.16) and (4.17), one finds the orthogonality conditions 

lorn exp ($73) Y j ( 7 )  Y k ( 7 )  d7 = 0 for j + k. (4.22) 

The norm for the eigenfunction ~ ~ ( 7 )  can be computed in the following manner. 

2 = 4  3. (4.23) 97 , 
Introduce the new variable 

and write the polynomia’l $.(7) of (4.21) in the form 

P, (7 ( z ) )  z= ($)’-’ a’, j - 1  L j - l ( z ) ,  (4.24) 

in which L,(z) is a Laguerre polynomial of degree j. Then the norm for the eigen- 
function ~ ~ ( 7 )  is given by 

R ( y j )  = f ($I+ [ ( $ ) j - l a j ,  j -112 z8e-a [L~-~(Z)] 2dz. (4.25) 

The above integral can be expressed in terms of gamma functions (e.g. Krylov 
1962). Hence, let 

som 
2 

“7,) ‘(7’) .5,0 = ~($)~(~)z(j-l)(j- i)!r(j+~) [%:,;I - (4.26) 

Then the right-hand side of (4.26) can conveniently be computed using the second 
relation in (4.21) and the value I?($) = 0.90274531. I n  fact, one has 

N(7, )  = 1.16255859; 

f o r j  2 2, N ( y j )  can be obtained by recurrence. 
Accordingly, choose the  first coefficient for the polynomialPk(7) of (4.21) so that 

ak,O = “(7k)1-” (4.27) 

Then the eigenfunctions ~ ~ ( 7 )  obtained are normalized; and one has the ortho- 
normality conditions 

(6jkis the Kronecker delta.) 
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I n  Guderley & Hsu (1972 b )  a procedure which is more closely patterned to the 
asymptotic theory of second-order different,ial equation was suggested. The 
essential point is a transformation of the dependent variable such that the first 
derivat,ive term is eliminated. The corresponding comparison eigensolutions 
obtained are also proportional to the polynomial of (4.21). Both approaches were 
tested in a heat-transfer problem (Guderley & Hsu 1973) and in the preliminary 
study of a linearly retarded boundary-layer flow problem (Hsu 1973). The results 
indicate that for the application of the Galerkin method with a limited number of 
terms the transformation of the dependent variable is impractical. It generates 
more complicated expressions without an improvement in accuracy. The trans- 
formation would be necessary if one wanted to  obtain a true asymptotic 
expression for large eigenvalues. 

5. Galerkin's procedure 
The transformed boundary-layer equation for w(5,y) is now solved by the 

Galerkin method using for the representing functions the orthonormal eigen- 
functions obtained in fi 4. Accordingly we write the assumed solution in the form 

m 

where the function F(g, 7)  is to  be selected to  satisfy the boundary condition a t  
infinity, as well as to improve the convergence of the series solution. Substituting 
(5.1) into the governing equation (4.13), and eliminating the second derivative of 
~ ~ ( 7 )  by (4.16), one has 

F7 + 2 ( l - F ) - -  d In U Ft. (5.2) 1 d5 

Now, multiplying this equation by the weight function exp (5q3) yj(q),  and inte- 
grating the resulting equation from zero to infinity, then applying the ortho- 
normaliby conditions (4.28), one is led to  the following system of first-order 
nonlinear ordinary differential equations: 
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q t )  = - q L 7 )  exp (*73) r&) d7. (5 .8 )  
/Om 

Similarly, if one multiplies the assumed solution by the weight function then inte- 
grates it from zero to infinity, one obtains the initial conditions 

Cj(0) = fOm [vo(Y) -F(o, 7)lexp ($73) rj(7) d7- (5.9) 

This equation suggests that it is convenient to choose F(6, 7) so that 

P(0,7)  = %(7)* 

The stiffness of the system (5.3) expresses itself by the values of hi, 2d In U / d [ ,  
the elements of matrix Ajk,  and implicitly in the nonlinear term Ej([). The pre- 
liminary results obtained for Falkner-Skan flows have shown that Aj,< is gener- 
ally less than 15 % of the hi (Hsu 1973). Hence, the linear part of the system (5 .3 )  
indeed has a diagonal-dominance form; and the integration method of Guderley 
& Hsu (1972a) for stiff equations is advantageous in solving the initial-value 
problem (5.3) and (5.9). In  the present procedure, the valuesofhj = j arenot over- 
ly large, thus a finite system of (5.3) is only moderately stiff. This results from 
the introduction of the Falkner-Skan transformation, which partially antici- 
pates the effect of boundary-layer thickening. 

6.  Selection of P([ ,q)  
In  the proposed Galerkin method, the assumed solution for v([, 7)  consists of 

an approximating function P(<,q) and a series solution in eigenfunctions yk(q) ,  
(5.1). Since the eigenfunctions that satisfy the homogeneous boundary conditions 
at  zero and at  infinity are predetermined, the function F(<, 7) must be chosen to 
satisfy the boundary conditions of the flow problem 

m<, 0) = 0, q(k-, 0) = 0, P( l ,  7 --f 00) --f 1.  (6.1) 

Moreover, it  is desirable and possible to take certain steps that improve the 
convergence of the series solution. This makes it guaranteed to work with a 
limited number of terms of the series solution in (5.1). 

The selection of P(& 7) is, therefore, based on the following observation. For 
7 < 1, the representing functions ~ ~ ( 7 )  in (5.1) have the power series develop- 
ment 

y,&) = a2rC72 + a512 7 5  + a s k  vs + . . . . (6.2) 

Hence, for 7 = 0 all the derivatives of order 3m and 3 m +  1, m = 1,2 ,  . . ., are 
zero. On the other hand, these derivatives of the physical profile v(<, 7)  generally 
do not vanish. Therefore, we have a situation similar to that which occurs in 
representing a sectionally continuous function by a Fourier series. An approxima- 
tion in the sense of minimizing of square error does exist; but the series converges 
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rather slowly as Xl/n.  However, if the function and its first k derivatives are con- 
tinuous, then the Fourier series for the function will converge more rapidly than 
the series X 1/nk+l (see e.g. Kantorovich & Krylov 1964). In the present problem, 
something similar would happen. The coefficients in the development of 

[V(Et  7)  -m, 7)1,,, 
would decrease rather slowly if (v - F),,, were not zero at the boundary y = 0. 
The same, but to a lesser degree, would also happen if the fourth derivative of 
(V - F )  with respect to y were not zero at  y = 0. It follows that the convergence of 
the series development in (5 .1 )  can be improved if one chooses the function F([ ,  y ) 
so that the third and the fourth derivatives of (v - F )  with respect to y are zero at 
y = 0. Of course, one could also consider the sixth and the seventh deriva- 
tives of ( v - F ) ;  but their effect on the convergence of the series solution in (5.1) 
is much less pronounced. 

The derivatives needed for these corrective terms are actually determined by 
the governing differential equation, the boundary conditions, and the second, 
the fifth, etc., derivative of v(<, y) with respect toy. The relations so obtained are 
called the compatibility conditions. It is true that if one were to solve the govern- 
ing partial differential equation perfectly, then the compatibility conditions 
would automatically be satisfied. Strictly speaking, the information contained 
in these conditions is not necessary for the formulation of the problem. However, 
in the present approach these conditions are important, for they allow one to 
obtain good approximations with a limited number of representing functions. 
We believe that the success of t,he KBrm&n-Pohlhausen method, and of certain 
versions of the Galerkin method, can be attributed to the fact that they take some 
of the compatibility conditions into account. 

To find the relation for these derivatives, one substitutes the series development 

(6.3) 

a3(x) = --$din U/dxa;t(x), (6 .4 )  

u(x,  y) = a&) y2 + a3(2) y3 + a4(2) y4 + . . . 
into (2 .16 ) ,  then compares the coefficients of terms that are of the same power in 
y. One finds 

3 a2(x) 4 dln U a4(x) = --3 = -- - 
16 (x2(x) 3 ( d2 ) ag2(x )*  

These two compatibility conditions are indeed expressed in terms of the second 
derivative of v(<,y), and the given outer velocity. For higher derivatives, one 
should differentiate (2 .16)  with respect to y. Then one can obtain the compati- 
bility conditions a,6(x) and a,(%) in terms of a5(x)  and a2(x), and so on. To find the 
corresponding relations in terms of the variables 5 and 7, one assumes that the 
initial profile for y < I is given by (3.5). Then, from the relations (4 .7 )  and (4.8), 
one finds that 

~ ~ ( 7 )  = b.$y2+gbtb3y3+bi($b4+&$&/b2)y4+ ..., ( 6 . 6 )  
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where a j ( [ )  = aj(x) since 5 = x. Now the expressions for v7?JC, 0) and v,,,,~,,((, 0) 
extracted from (6.7) are the counterparts of the compatibility conditions (6.4) 
and (6.5). 

A function F(5,q) by which the initial condition and the first two compat,i- 
bility conditions can be satisfied is 

(6.8) 

(6.9) 

F(C97) = vo(rl) + Xl(Ofl(7) +X, ( t ) f2 (7 )?  
where vo(7) is the initial profile, and 

fl(7) = &I3 exp ( - $s3), fi(7) = &I4 exp ( - $7". 
One notes that these functions satisfy the boundary conditions 

fi(0) = f l ( O )  =f;(o)  =fj"(O) =fl(oO) = 0, fl"(0) = I, 

f,(O) = f ; , ( O )  =fi(O) =f[(O) =fz(c0) = 0, f i V ( 0 )  = 1. 

(6.10) 

(6.11) 

Thus the approximating function given by (6.8) indeed satisfies the boundary con- 
ditions (6.1). The substitution of (6.8) into (5.1) gives the assumed solution in 
the form 

'(C, 7) = 'O(7) +sl(f;)f l(r)  + x 2 ( 6 ) f 2 ( 7 )  f c ' k ( C ) y k ( 7 ) .  (6.12) 

If one differentiates this equation twice with respect to 7, then evaluates it at  
7 = 0, one finds 

03 

k = l  

00 

(6.13) 

Similarly, the third and the fourth derivatives of (6.12) give the explicit expres- 
sion for S,(C) and Xz([), respectively. Assuming the validity of (3.6), and using 
(6.4) and (6.5), one obtains 

X,(fl=X) = - 16- 

a 
1:5 ; 1 9 2 + 1 6  

X , ( ~ = X )  = 24bg3 4 dlnUb d lnU b 4 
4 [ - 5 ( r ; ) 2 + ~ ~ 0 7 ( ; )  ----P ( 62 

(6.14) 

(6.15) 

These equations indicate that the approximating function F((, 7)  must depend on 
the unknown function a,(,$), if the compatibility conditions are t'o be satisfied 
exactly. 

In  principle, the best procedure for achieving highly accurate results would 
probably be obtained if one were to extrapolat'e for X,(C) and S2(t) the unknown 
function a,(() of (6.13), through the interval of integration for which the com- 
putabion is carried out to determine the coefficients Ck(C), since only a limited 
number of terms in series is used in practice. This procedure would certainly 
require a substantial increase in computing effort; and, as indicated by the 
numerical experiment, special measures are needed in the vicinity of separation. 
One must remember that both X,($) and I,(,$) are introduced for the sole purpose 
of improving the convergence of the series solution in (6.12). In  general, a 
considerable amount of improvement can be achieved even if the XI(<) and 
S,(5) used in computation are only approximations to their exact expressions, 
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(6.14) and (6.15). A systematic search for the approximat,ions for XI(<) and 
5,(() is carried out in numerical examples. It shows that a simple approxima- 
tion to the unknown function a,(<) can be effectively used in (6.14) and (6.15). 

7. Evaluation of integrals 
The numerical integration of the initial-value problem (5.3) and (5.9) requires 

the evaluation of integrals (5.4)-(5.8). Using the relations (4.20) and (6.8), and 
introducing the new independent variable (4.23), i.e. 

the integrals (5.4)-(5.8) become 
2 = $73, (7.1) 

(7.2) 

One notes that all the integrands involved are known, except G(6,q) of (7.7), 
which depends on the solution C&). 

The integrals in (7.2)-(7.6) now have the form that can be evaluated by the 
Gaussian-Laguerre quadrature formula 

r w  M 

(7.10) 

The set of values for A ,  and the roots of the Laguerre polynomial z, for different 
M have been tabulated by Stroud & Secrest (1966). If the integrand f ( z )  is a 
polynomial of degree not greater than 2M - 1, then the quadrature formula 
(7.10) gives the exact value for the integral. For the present problem, the integrals 
in (7.2)-(7.5) can be evaluated beforehand, but the integrals resulting from the 
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nonlinear term (7.6) must be evaluated at  ea,ch integrat,ion step twice, if a 
predictor-corrector method is employed to solve the initial-value problem (5.3) 
and (5.9).  In applications, the choice of ill is determined by the desire to obtain 
accurate results, as well as to keep the computing effort as small as possible. 
For the class of problems considered, if one uses N representing functions in the 
assumed solution (6.12), then, according to our experience, 2M > gives 
sufficient accuracy. 

8. Remarks about the integration method 

system of first-order ordinary differential equations in the form 
The numerical integration method employed in the computation deals with a 

dY/dX+AY = r(x, Y), 

in which A is a diagonal matrix whose elements may be very large (Guderley & 
Hsu 1972a). The important feature of the method is that the effect of A is taken 
into account analytically, while the right-hand side r(x, y) is approximated by a 
polynomial of degree n in x. It is then possible to carry out the integration pro- 
cedure by a predictor-corrector scheme. If the matrix A is zero, or if the term 
Ay is incorporated in the right-hand side, the method becomes an ordinary 
predictor-corrector method. On the other hand, if the right-hand side is a known 
function of x only, then one obtains the analytic solution for y, and the method 
is numerically stable for any step size. Therefore, one can expect to have stability 
for a fairly large integration step, if the stiffness of the right-hand side is small 
compared with that of Ay. In  the actual computation, the right-hand side is 
approximated by a polynomial of degree four. This approximation is tested by 
comparing the difference between the predicted and the corrected values of y 
with the allowable truncation error. This check can then be used to control 
the step size of the integration. All the numerical results obtained in this study 
are based on the accuracy of in both the initiation phase and the prediction- 
correction phase. 

9. Linearly retarded flow 
The boundary-layer flow problem with a linearly retarded mainstream flow 

velocity was introduced by von K&rmBn & Millikan (1934), to study boundary- 
layer separation. Later, the problem was solved by Howarth (1938), by a series- 
expansion method. Since then it has been considered one of the standard problems 
to test newly proposed computational methods. This problem is selected here as 
the first example to test the proposed Galerkin method; for the problem has been 
solved by many different methods, and accurate results are available for com- 
parison. We assume that the dimensionless external velocity has the form 

U1(xl) = 1 - Qxl. 

This indicates that the initial profile can be given by the Blasius solution. One 
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recalls that a different expression for U,(x,) can be obtained by a simple transfor- 
mation of the independent variable. 

In  the proposed Galerkin method, the final system of equations to  be inte- 
grated is expressed with respect to the variable 6. Therefore, U,(x,) must be ex- 
pressed as a function of (. Following the transformations (2.6) and (2.14) or 
(2.19), one finds 

x1 = S[I-(i-&eE)~].  (9.2) 

Hence (9.1) becomes U ( [ )  = ( I  - $8 et)3. (9.3) 
In  the computations, we use e = 
presenting functions N in the assumed solution, i.e. 

Moreover we use a limited number of re- 

(9.4) 
N 

k=l 
45 r f  = %(Ti) +XI(E)fl(V) +&(5)fz(r)  + 2 Ck(5) Y k m ;  

and we define the dimensionless wall shear stress as 

(9.6) 

The latter can be computed from (6.13), (9.2) and (9.3). 
As the first numerical experiment for the proposed method, we choose the 

approximating function P((, 7) = q,(~),  i.e. X,(() = X,(E) = 0. This implies that 
the assumed solution (9.4) satisfies the compatibility conditions of the initial 
profile only. The wall shear stress then computed with N = 10, as well as those 
of Howarth, are given in figure 1. As expected, the results are acceptable only in 
a small region 0 < x, < 0.1. Additional computation with N = 20 has resulted 
in a very slight improvement; the results are accurate in 0 < x, < 0.2. In  the 
next trial experiment, we consider also the first correction term X,(E), (6.14), 
in which the unknown function a2(E) is roughly approximated by the first term 
of (6.13), b,. The wall shear stress, then computed with N = 10, is now acceptable 
in a larger region 0 < x, < 0.6 (figure I).  These facts confirm the analysis that 
the accuracy of the approximation (9.4) depends rather strongly on how it satisfies 
the compatibility conditions. In  fact, good approximations can be obtained, even 
if (9.4) satisfies the first compatibility condition only approximately. 

The previous experiment showed that better results can be obtained for the 
entire flow region if a2([) is chosen more properly in (6.14). One notes from (4.13) 
or (5.3) that the solution depends upon the known function dln U/d[.  It is, there- 
fore, legitimate to assume in the approximation for XI([) that a2([)  is a function 
of dln U / d [ .  It probably suffices to approximate (6.13) by the simple linear 
relation 

and use it in the approximation for S,([) and X,([). For the present flow example, 
the first half of the flow region can in fact be described approximately by 

With the approximation (9.7) for X1(5), and N = 10, the wall shear stress com- 
puted as a function of x, is given in figures 1 and 2. It shows that the method 
generally gives good results for the entire flow region. An additional run with 
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2 1  

FIGURE 1 
Xl 

FIGURE 2 

FIGURE I .  Wall shear stress for linearly retarded flow, for &([) = 0 and N = 10 in (9.4) : 
-.- , X , ( [ )  = 0;  - - - -, a2(Q = b , ;  --, a2(C) given by (9.7); 0, Howarth’s results. 

FIGURE 2.  Wall shear stress for linearly retarded flow, for X, ( [ )  = 0 and az(E) given by 
(9.7): -- -, N = 10; __ , N = 20; 0, Howarth’s results. 

N = 20 has been carried out; and the results obtained are also presented in 
figure 2. The figure indicates clearly that extremely accurate results for most of 
the boundary-layer flow region can be obtained by the present approach. However, 
in the near vicinity of the separation point, the results obtained are rather poor. 
This deficiency could be attributed to the fact that the representing functions are 
derived on the basis of flow without separation, and that the approximation (9.7) 
for a2(5) is not appropriate in that region. Thus, it  would require a large number of 
representing functions to  obtain accurate results in the vicinity of t,he separation 
point. We mention in passing that the singular behaviour at separation seems 
to be relaxed somewhat in the present approach. Consequently, the integration 
process for solving (5.3) can be carried up to the separation point with fairly 
large step size. 

Additional numerical experiments have been carried out with the full as- 
sumed solution (9.4), in which a2(() in (6.14) and (6.15) is approximated by a 
relation similar to (9.7). The results obtained for 7Jx1) are slightly better than 
those given in figure 2, up to x1 = 0.8; but they deteriorate further downstream. 
That the results obtained in the vicinity of separation are poorer is because X 2 ( c ) ,  
given by (6.15), depends rather strongly on a,([), and the approximation used 
for a&) is not appropriate in that region. 

The integration of (5 .3)  confirms that its linear operator has a diagonal- 
dominance form, since the step size is increased from 0.1 to 0.4, which is about 
eight times (for N = 20) larger than the maximum step size allowed by the 
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stability of the ordinary predictor-corrector method. As the nonlinear effect 
becomes important downstream, the step size is automatically decreased, and 
A5 = 0.013 near the separation. The computer time required for each run with 
N = 10 is about 1 min of CDC 6400, of which about 15 s are spent on generating 
the initial profile; for the runs with N = 20, it is about 150s. The velocity pro- 
files computed from (9.4) showed that the Falkner-Skan transformation, intro- 
duced in (2.14), is quite appropriate; for the boundary-layer thickness of the 
velocity, equal to 0.999, has increased only slightly in the entire flow region, from 
9 = 2 4 1  a t  the initial station to 7 = 2.50near separation. 

Finally, the Galerkin procedure has been carried out exactly, in the sense that 
the unknown function u2(5) is computed from (6.13), at each integration step, 
for XI(<) and X2(5). As one would have expected, the results obtained are better 
than those of figure 2, for most of the flow region 0 < x1 < 0.85. But poorer 
results are obtained in the vicinity of separation. This indicates that a large num- 
ber of terms would be needed in (9.4) to obtain accurate results in that region. 
Moreover, the computation time required is drastically increased, owing to a 
sizeable reduction in step size in the vicinity of separation (e.g. in the run with 
N = 20, A t  = 0.013 a t  x1 = 0.6; 0.003 a t  x1 = 0-8; 0.0002 a t  x1 = 0.9). Therefore, 
we can conclude that the present approach is not practical for obtaining the 
solution for the entire flow region. 

10. Flow over a circular cylinder 
The boundary-layer flow past a circular cylinder is different from the linearly 

retarded flow : in it, there is a region of accelerating mainstream followed by one 
of decelerating mainstream. So this problem is particularly testing for the pro- 
posed Galerkin method. Here, the inviscid solution of the problem is considered 
as  the known external velocity. Accordingly, one has 

Vl(xl) = 2sinxl. (10.1) 

Hence, the Faulkner-Skan solution of a stagnant flow can be used as the initial 
profile. A4nalogously to  the first example, one obtains, from (2.6)) (2.19) and 

(10.1), cosxl = 1 -ice<, (10.2) 

U ( 5 )  = [ce5(4-ce5)]3. (10.3) 

Again the value t: = 10-6 is used in computations. Based on the assumed solution 
(9.4), the wall shear stress for the problem is defined as 

(10.4) 

This can be computed from (6.13)) (10.2) and (10.3). 
In order to demonstrate again the significance of the compatibility conditions 

of the assumed solution (9.4), we first set Til([) = S2(6) = 0. As one would expect, 
the computed wall shear stress ( N  = 20) is very accurate only for a short dis- 
tance downstream of the initial station 0 < x1 < 0.5 (figure 3). The results are 
considerably improved when Xl(6) is included in the assumed solution, in which 
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2 1  

FIGURE 3. Wall shear stress for flow past a circular cylinder, for X,(& = 0 in (9.4): -.-, 
9,(.g) = 0, N = 20; --- , a&[) = b,, N = 10; - , a&) given by (10.5), N = 10; 
0, Terrill’s numerical results. 

2 1  

FIGURE 4. Wall shear stress for flow past a circular cylinder, for X,([)  = 0, a2([ )  
given by (10.5) and N = 20: 0, Terrill’s numerical results. 

a2(c) is roughly approximated by the constant b,. Figure 3 shows that T,,(xJ, 
obtained with N = 10, is surprisingly accurate for most of the flow region. 
Again, poorer results are obtained for the vicinity of separation, and the sepa- 
ration point is given to an accuracy of within 6% of Terrill’s (1960) numerical 
result. 

Better results for the vicinity of separation can be obtained if the unknown 
function a&) for X,(c)  is more properly approximated. For the present problem, 
the computational results also show that a,(e).is practically linearly proportional 
to d l n  U/dc  in the upstream flow region. Hence, it suffices to approximate a&) 
by (9.6). To be specific, we use 

(10.5) 
0.5020 - 0.0539b2 b, - 1.004 d In U 

0.4416 + 0.4416 d t  a2(5) = 
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for Xl(<), and set X,(<) = 0 in (9.4). The results obtained with N = 10 are given 
in figure 3. It clearly indicates that 7,,(x1) now behaves more like the numerical 
results. Consequently, one can expect more accurate results, particularly in the 
vicinity of separation, if more terms of the representing functions are considered. 
To confirm this expectation, we next use N = 20; the results obtained are given 
in figure 4. It is clear now that the present approach can give extremely accurate 
results for the entire flow region, if N is large enough. Again the integration pro- 
cess for (5.3) can be carried out up to the separation point, with fairly large step 
size. The computer time required for the run with N = 20 is about 3min of 
CDC 6400; for N = 10, it is about 1 min. The velocity profile computed a t  various 
values of T~ confirms that the boundary-layer thickness, measured with respect 
to the transformed variable 7, remains the same order of magnitude throughout 
the entire flow region. For a dimensionless velocity equal to 0.999, 7 varies 
from 2.05, a t  the initial station, to 2.19 at separation. 

Additional computations have been carried out for other numerical experi- 
ments treated in the linearly retarded flow problem. The results give the same 
information as those cited in 3 2. 

1 1. Concluding remarks 
For the class of boundary-layer flow problems considered, the several 

transformations carried out in the analysis prove to be beneficial, since the com- 
putational effort of the proposed Galerkin met,hod is rather simple and straight- 
forward. One need provide only the initial profile and the external flow velocity 
for the reduced initial-value problem, and the integration process can then be 
carried out directly from the initial station to the point of separation with fairly 
large step size. Furthermore, the method provides a qualitative assurance 011 the 
accuracy and the reliability of the results computed, by checking how the co- 
efficient of the series solution ck(<) behaves as E increases. For instance, poorer 
results in the vicinity of separation are reflected by the fact that C&) either 
decreases very slowly, or starts to increase as I. Li increases. ' 

We conclude, from numerical experiments on the two representative problems, 
that  the complete set of representing functions found (which is independent of 
the initial and boundary conditions) can indeed be used for all conceivable prob- 
lems of the class considered, and that the method can effectively give highly accu- 
rate results for the entire boundary-layer flow region, if the auxiliary function 
F(6,q) of (6.8) is chosen to satisfy only the first compatibility condition of the 
upstream flow region. The accuracy of the result, of course, depends on the 
number of representing functions used in computation. I n  fact, decent results 
for the entire flow region can be obtained with a reasonable amount of cornputer 
time (about 3 min of CDC 6400) if one uses 20 representing functions. 
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